

ESA GNC 2017 – Marc Hirth et al.

1

PEET V1.0: THE STATE-OF-THE-ART POINTING AND PERFORMANCE ERROR
ENGINEERING TOOL FOR SPACE MISSIONS

Marc Hirth (1), Haifeng Su (1), Thomas Ott (2) , Massimo Casasco (3) , Guillermo Ortega (3)

(1) Astos Solutions GmbH, Meitnerstr. 8, 70563 Stuttgart, Germany, Email: marc.hirth@astos.de
(1) Astos Solutions GmbH, Meitnerstr. 8, 70563 Stuttgart, Germany, Email: haifeng.su@astos.de

(2) Airbus Defence and Space, 88090 Immenstaad, Germany, Email: thomas.ott@airbus.com
(3) ESA, ESTEC, Keplerlaan 1, 2201 AZ Noordwijk, The Netherlands, Massimo.Casasco@esa.int
(3) ESA, ESTEC, Keplerlaan 1, 2201 AZ Noordwijk, The Netherlands, Guillermo.Ortega@esa.int

ABSTRACT

Future space missions tend to rely on increasingly demanding pointing performance and/or are
driven by the need for a cost-efficient design process.

To avoid potential mission- or cost-critical changes late in the design, having at hand a clear
pointing error engineering methodology to systematically assess achievable performances for
various requirement categories already in early project phases is crucial.

The Pointing Error Engineering Tool (PEET) is a software tool which is intended to support
systems and AOCS engineers in the setup and calculation of such performance error budgets
with a special focus on spacecraft pointing and relative-positioning. Its computational core is
based on standardized rules established in the ECSS Control Performance Standard and on the
methodology described in the ESA Pointing Error Engineering Handbook.

This paper wraps up the translation of this methodology into a software tool and provides an
overview of the realized features. Finally, the paper comments on the benefits of PEET and the
developed concepts from an ESA and industrial user point of view.

1 INTRODUCTION

The ECSS Control Performance Standard E-ST-60-10C [1] and the ESA Pointing Error
Engineering Handbook (PEEH) [2] form the basis of the pointing error engineering process in ESA
projects. These documents provide both the mathematical elements and a systematic engineering
methodology to set up pointing requirements, evaluate budgets and to assess pointing performances.
In 2013, a software prototype called Pointing Error Engineering Tool (PEET) was developed and
released under an ESA contract with the aim to complement and to ease the application of this
methodology in daily work.
With the feedback received from users and the lessons learned during the prototyping phase, a
second development phase was initiated under a contract of and funded by the European Space
Agency to turn the prototype into a consolidated software tool which is made available free of
charge within ESA member states.
The basic information about the methodology and tool implementation presented in this paper has
already been outlined in [3], but is updated herein to represent the final state of the tool. Further, the
paper covers aspects of tool verification and validation and its current application in projects.

ESA GNC 2017 – Marc Hirth et al.

2

2 PEEH METHODOLOGY IN THE TOOL

The methodology described in [2] provides explicit guidelines on how to define pointing
requirements and on how to define and evaluate pointing errors from source to the final error
contribution using dedicated analysis steps (ASTs). The reflection of these steps in the software tool
is described in the following.

2.1 Requirement Specification Parameters (“AST-0”)
Dependent on its nature (statistical or spectral), [2] provides sets of specification parameters to
unambiguously define pointing requirements which are completely reflected in the tool. For
statistical requirements, the following parameters are used:

• Required maximum error value (defined as deviation per axis or half-cone error)
• A related level of confidence that above-mentioned error values are not exceeded
• Metrics for time-windowed errors in terms of performance/knowledge indices as defined in

[1] and related parameters (e.g. window time)
• The statistical interpretation that applies to the evaluation

The statistical interpretation concept (as defined in [1]) describes how resulting errors shall be
treated in the evaluation concerning the domains “time” and “ensemble” (e.g. different satellites,
observations, etc.). As depicted in Figure 1, “ensemble” interpretation accounts for the statistics of
the worst-case errors in each realization no matter when they occur in time. “Temporal”
interpretation accounts for the temporal statistics of the realization that contains the worst-case error
value and “mixed” interpretation finally accounts for the entire statistics over both time and
ensemble realizations.

Figure 1: Statistical interpretations [1]: “ensemble” (left), “temporal”(centre), “mixed” (right)

This concept has been further generalised during the PEET development phase to obtain a more
flexible definition of requirements (see also section 4.2).
For spectral requirements, only the metric for time-windowed errors is used. All other specification
parameters above are replaced by a spectral requirement function that describes the upper bound of
the power spectral density of the error over frequency (within a given bandwidth).

2.2 Error Source Characterization (AST-1)
This analysis step aims for identifying all potential error sources that affect the budget and
classifying these sources on the basis of their characteristic properties (e.g. time-constant vs. time-
random, random vs. deterministic, random variable vs. random process).
The first part obviously remains an engineering task as it differs in each application case and neither
[2] nor the tool can provide explicit support. For the classification however, PEET covers all the

ESA GNC 2017 – Marc Hirth et al.

3

error signal classes listed in [2] which can be modeled as:

• Time-constant random variables, i.e. biases which can be further subject to an ensemble-
randomness (e.g. alignments within a certain bound)

• Time-random variables, i.e. errors that are random over time; the parameters of such sources
can further be subject to an ensemble-randomness (e.g. a noise whose upper bound is
dependent on temperature conditions that are considered constant within an observation but
may differ between observations)

• Random processes, i.e. (stationary, ergodic) noise sources that are completely defined by
their power spectral density or by a given variance and bandwidth

• Periodic errors, in particular sinusoidal disturbances whose amplitudes may again be subject
to an ensemble-randomness.

• Drift errors, i.e. linearly increasing errors which can be reset after a certain amount of time
(e.g. due to calibration); the linear slope may again be distributed over the ensemble of
realizations

All ensemble-random properties of the error source classes can either be set as discrete or be
selected from common statistical distributions: uniform, (truncated) Gaussian, arcsine, Rayleigh.
Furthermore, also arbitrary probability density functions (PDFs) can be defined by the user.
For time-random variables, the temporal distributions are restricted to be uniform and Gaussian, as
only for these distributions standardized rules are provided in [1] on how the pointing error metrics
in AST-3 need to be applied.

2.3 Transfer Analysis (AST-2)
The transfer analysis determines how initial error sources (e.g. a noise or misalignment of a sensor
in its mechanical frame) affect the figure of merit defined by the requirement (e.g. the pointing error
of a payload in the pointing reference frame). The “route” to this final pointing error contribution
may underlie various transfers such as coordinate transformations or closed-loop transfers. The
situation for a general transfer analysis setup over multiple subsystem levels is sketched in Figure 2.

Figure 2: Transfer analysis from source to total error

As for the error source classification, no distinct rules can be provided for the identification of

ESA GNC 2017 – Marc Hirth et al.

4

relevant transfer models for a certain application case. However, the tool provides a selection of
generic (i.e. not even restricted to pointing) static and dynamic system models as well as dedicated
parametric models for certain sensor and actuator error characteristics.
The dynamic system models available are based on linear time-invariant models with multiple
inputs/outputs to account for cross-couplings between different axes. Feedback loops can be
realized by either directly specifying a closed-loop transfer function or by setting up the loop
explicitly with a dedicated model block.
The transfer rules for the dynamic system transfer depend on the class of the error signal. Periodic
and random process errors are accurately transferred using the system gain at the relevant frequency
or the entire frequency response respectively [4]. Time-constant random variables are scaled using
the system’s DC gain. For time-random variables, where no frequency domain information is
present by definition, the system’s H∞ norm is used as conservative upper bound.

2.4 Error Index Contribution (AST-3)
This step analyses the impact of the time-windowed pointing error metric as one part of the
requirement specification parameters. The definition of all available metrics is depicted in Figure 3
with the typical abbreviations as defined in [1] and [2].

Figure 3: Time-windowed error contributions for different pointing metrics

As an example: the relative performance error (RPE) describes the variation of an error with respect
to the mean error in a given time window Δt. If this metric is applied to a periodic signal with a very
large period compared to the window time, the variation within the window is much smaller than
the signal amplitude. Conversely, for a high frequency periodic signal, the entire amplitude
variation shows up within one time window.
For random variables, [1] provides explicit tables with rules on how the various metrics affect the
effective errors which are completely integrated in the tool. For random process and periodic error
signals, an equivalent representation of the metrics in terms of rational transfer functions exists [2],
[3]. This allows an accurate frequency domain contribution analysis with the tool.

2.5 Error Evaluation (AST-4)
The final analysis step accounts for the evaluation of the total pointing error or the current error at
any stage where a (sublevel-) requirement is defined. According to [2], three contributions are
assessed for statistical requirements: the time-constant, the time-random and the total error

ESA GNC 2017 – Marc Hirth et al.

5

contribution where in the end the absolute value of the error for a given level of confidence is of
interest.
The summation of the error contribution depends on the statistical method applied [2]. For the
“simplified statistical method” (realized in the PEET prototype), the error contributions are fully
described by their equivalent mean and standard deviation (i.e. the underlying distribution is
discarded at this point). Mean values are summed linearly. Standard deviations are summed either
in an RSS sense (assuming no correlation) or linearly (assuming full correlation). Then, a
confidence factor np = 1,2,3 is used to scale the overall standard deviation (i.e. to represent a 1σ, 2σ
or 3σ confidence level).
The “advanced statistical method” relies on a characterisation of the error properties in terms of
probability density functions (PDFs). The total error is generally obtained via convolution of the
joint PDF of all error contributions. For the resulting PDF, the respective cumulative distribution
function (CDF) is computed and evaluated for the level of confidence specified in the requirement.
The major restrictions of the simplified statistical approach is that is assumes applicability of the
central limit theorem. For that reason, one of the key extensions of the PEET release version is an
update to the advanced statistical method (see section 4.1).

3 TOOL OVERVIEW

3.1 Platforms and Requirements
PEET can be used on multiple platforms (Windows, Linux) on a standard desktop PC or laptop.
The tool is designed as an extension to MATLAB and completely runs inside the MATLAB
environment. Apart from a plain MATLAB installation (2011b and later), only the Control System
Toolbox is required.

3.2 Architecture and External Interfaces
PEET mainly consists of two components: a dedicated graphical user interface (GUI) based on Java
and the core computational routines implemented as MATLAB classes.
The GUI is used to define requirement specification parameters, values and identifiers and to set up
the pointing system from error sources to the final error using blocks from a database. This can
include system transfer models (as in Figure 2) or simply comprise a summation of errors on
different requirement levels.
Input data can directly be specified in tables and input fields or imported from MS Excel
spreadsheets. In addition to numerical inputs, also MATLAB variable names and notation can be
used to specify parameters. All relevant scenario data is stored in an XML file which serves as
interface for the MATLAB core classes for the initialization and evaluation of the budget.
Once a pointing system is created and saved using the GUI, two operational modes are possible.
First, the GUI can be used directly to start an evaluation and to inspect the results. The
communication between the GUI and the MATLAB classes is realized in this case via the Java
MATLAB Interface (JMI). Second, a script-based execution of the tool via user-defined Matlab
scripts is possible. Together with assigning MATLAB workspace variables to system parameters,
this allows batch-mode operations without further use of the graphical user interface and an
integration of PEET in a tool-chain with other analysis modules.
The results obtained with PEET can further be exported to MS Excel using a configurable report.

ESA GNC 2017 – Marc Hirth et al.

6

3.3 Graphical User Interface
This section gives a brief overview of the PEET GUI which provides different windows for the
setup and analysis of budgets.

System Editor
The editor panel in the System Editor (Figure 4) is the main tool to design the architecture of a
pointing scenario. It can first be populated with a selection of model blocks from the Block
Database which are then connected to represent the error signal flow. The workflow for moving and
connecting blocks is intentionally similar to the workflow with MATLAB Simulink. Also different
levels (subsystems) are supported to maintain a good overview in case of more complex systems.
Block dialogs (supported by tooltips) are used to specify error source and system related parameters
including signal & parameter units. The latter can be chosen from a predefined set of SI and non-SI
units and also custom units can be created. When connecting blocks, the compliance of units is
automatically checked by the tool.

Figure 4: The System Editor

The menus present in the System Editor window serve for file management, requirement definition
(multiple requirements sets can be specified in a single scenario) and definition of dependencies
(correlation, coherence and phase relations) between error sources.
An execution log serves as scope to track the progress of the evaluation and issues occurring
meanwhile (e.g. invalid user parameter inputs).

Block Database
The Block Database (Figure 5) - similar to the Library Browser in MATLAB Simulink – contains
all building blocks which can be used to populate a pointing scenario. The blocks are categorized in
groups (errors sources, static/dynamic systems, etc.).
It contains both generic blocks and parametric models of sensors, actuators and transfer systems
which are based on standardized models wherever possible (e.g. [5], [6]). For each model, the block
database shows a “quick-view” help with important information about the model (purpose,

ESA GNC 2017 – Marc Hirth et al.

7

input/output dimensions, background). A detailed description of all models is further present in the
software user manual.

Figure 5: The Block Database

Budget Tree View
The Budget Tree View (Figure 6) serves to analyze error contributions and the signal content (from
different error signal classes) of the entire pointing system. Selecting a block in the tree-like
representation of the pointing system shows the related signal content in the information panel on
the right. For each signal class, statistical information is provided in terms of mean and standard
deviation together with a plot preview of the PDF (or PSD respectively for a random process error
signal). In case of spectral requirements, only random process contributions are displayed.

Figure 6: The Budget Tree View

Breakdown Tree View
The Breakdown Tree View (Figure 7) is used to check the compliance of the budget. It shows only

ESA GNC 2017 – Marc Hirth et al.

8

those blocks where requirements have been associated with (by value and optionally an ID).
For statistical requirements, the information panel displays a comparison of budget and requirement
values for the time-constant, time-random and total error contributions on all axes together with a
plot preview of the underlying CDF. For spectral requirements, the budget spectrum is plotted
versus the specified requirement function.
In addition, color-coding is used in the tree view for an easy determination of budget violations or
proximity to margins.

Figure 7: The Breakdown Tree View

Visualization
Various plots (PDF, CDF, PSD, cumulated variances) are available from the Budget or the
Breakdown Tree Views to support the assessment of results. Typical user interactions such as data
picking, axes selection, or zooming are available. Dependent on the error signal type, further
information such as scatter plots indicating the correlation or cross-spectral density plots are
available on separate tabs. All plot data can be exported in a MATLAB compatible format.

3.4 Software Limitations
It is important to note that PEET needs to be considered as a systems engineering tool for budgeting
with a focus on steady-state solutions rather than a replacement for a non-linear simulator.
Functionalities concerning the treatment of non-linearities, transients, system uncertainties and non-
stationary random processes cannot be explicitly accounted for in the tool. There is a lack of
standards for these topics which are partially at the interface of research and tool development
where dedicated algorithms and methods are not mature enough.
Furthermore, although the tool takes over the entire computation chain of an error budget, still a
certain amount of user expertise on (pointing) error engineering is required. In particular, for a
proper definition of requirements or modelling of error sources, no universal guidelines or
automated rules can be provided. Finally, PEET is not intended to be a tool for control/estimator
design & tuning, as e.g. the no stability checks of closed-loops in defined feedback systems are
carried out. The software intentionally covers only the perimeter of [2] and provides interfaces such
that users can plug PEET into own tools for design/tuning.

ESA GNC 2017 – Marc Hirth et al.

9

4 KEY SOFTWARE UPDATES

This section present the major functional updates of the release version of the tool compared to its
prototype (apart from improvements on user-friendliness aspects which have been identified from
user feedback and industry inputs during working group meetings at ESA). These updates are
related to a more accurate approach for evaluating confidence levels, handling initial dependencies
between error sources and providing a more flexible definition for requirements.

4.1 Advanced Statistical Method
Background
The PEET prototype was restricted to the simplified statistical method described in [1] and [2], i.e.
the error evaluation is based on the assumption that the central limit theorem is applicable and the
total error follows a (nearly) Gaussian distribution (on all axes). While this assumption holds for a
“sufficient” number of contributors which have approximately the same magnitude, a significant
systematic error is present when dominating non-Gaussian contributions exist.
Figure 8 depicts such situation for two zero-mean distributions (for simplicity & without loss of
generality): Assume that the absolute value of the error shall remain below a given value with
99.7% probability (pc = 0.997), i.e. with a confidence factor np = 3 as mentioned in section 2.5. For
an ideal Gaussian, this obviously results in the exact error value of e = 3σ “by definition”. For a
uniform distribution with bounds ±b, the standard deviation is given by σu = b/√3. Applying the
same confidence factor under the same assumptions would then result in error value e = √3b while
the actual result is e = 0.997b. Thus, a systematic error of more than 80% is present which (already
for a “2σ error”) exceeds the explicit bounds of the underlying distribution.

Figure 8: Location of typical confidence levels for a Gaussian distribution (left) and for a
uniform distribution (right) “assuming” a Gaussian shape

Another issue with the simplified statistical method is related to the evaluation of line of sight errors
(LoS) - even if the errors on individual axes are ideally Gaussian. Assume the z-axis is the desired
LoS axis and rotational errors around the 3 target axes are given by [ex, ey, ez]. Then the proper
statistical evaluation of the error is represented by:

 deeepe yx

LoC

LOS

 += ∫ 22

0
 (1)

Reference [2] provides a derived expression which is explicitly valid for instantaneous (or
deterministic) LoS errors, i.e. it is not applicable to “statistical” axes errors evaluated from |µi| +
npσi.

ESA GNC 2017 – Marc Hirth et al.

10

22
yxLOS eee += (2)

For “statistical” errors, [1] provides an approximate solution of the form

)1log(2),max(cyxLOS pe −−= σσ (3)

which is valid for zero-mean Gaussian distributions with closely equal standard deviations on the
relevant axis. A “careless” application of equations (2) or (3) to non-matching conditions (e.g. non-
Gaussian, non-zero means, significantly different standard deviations) may generally lead to
significant systematic errors as depicted in Table 1.

Table 1. Exemplary 68.3% line-of-sight errors
Case ≈

Error
Eq.(2)

≈ Error
Eq.(3)

PDF and exact value
Eq.(3)

X: G(0,1)
Y: G(0,1) -7% 0%

eLoS=1.5158

X: G(1,1)
Y: G(1,1) 30% -30%

eLoS=2.190

X: G(0,1)
Y: G(0,2) -22% +30%

eLoS=2.305

X:U(-√3, √3)
Y: G(0,1) -10% -3%

eLoS=1.57

One way to treat these issues is to investigate if the central limit theorem or above-mentioned LoS
conditions are applicable and assess the impact case-by-case. The alternative is to fully discard the
evaluation based on mean on standard deviation only and systematically account for the underlying
probabilities using the advanced statistical method.

Implementation Details
An analytical treatment of the advanced statistical method implies that the “summation” of
moments is replaced by the “summation” of distributions (i.e. convolution). This step as well the
subsequent evaluation of errors with a given level of confidence from a CDF requires integration of
PDF. If also correlation between different contributions needs to be considered, this further implies
to knowledge of the joint PDF all error sources for the convolution.
These preconditions are however in conflict with several constraints:

• Apart from the Control System Toolbox, no further MATLAB toolboxes shall be used (e.g.

ESA GNC 2017 – Marc Hirth et al.

11

the Symbolic Toolbox) to ensure an easier access for users
• Even with a toolbox for symbolic integration/ convolution, closed-form solutions for an

arbitrarily complex system cannot be guaranteed
• Even with a numerical approach for the convolution, the required joint PDF is usually not

known by the user and cannot simply be determined; as a maximum, the marginal
distributions of the sources and correlation in terms of a correlation coefficients are expected
to be available to users

For these reasons, an entirely numerical (sample-based) approach is realized in PEET. The intrinsic
drawback of this approach is a loss of accuracy with respect to the analytical computation. The goal
for the project was not to exceed 1% relative error in the overall computation chain using a
sufficiently large sample number and a sufficiently large bin number for retrieving the PDF and
CDF by numerical integration with adequate resolution. Then, the cost of this numerical error can
safely be neglected compared to the potentially large systematic errors related to the simplified
statistical method.
The numerical approach for random variable error sources and distributed parameters requires the
generation of random samples that represent both the random variable with the desired distribution
and the desired correlation between the axes and error sources.
Several methods exist to create samples of correlated standard normal distributed random variables.
The method used in PEET is based on [7]. It first requires the covariance matrix Σ of size m x m for
the m error signals to be realized. For a standard normal distribution (i.e. with unity variance), the
covariance matrix is equal to the matrix of correlation coefficients. Then a Cholesky decomposition
is applied to the matrix to obtain an upper triangular matrix A:

AAΣ T= (4)

In a next step, a vector n of length ns is drawn from a standard normal distribution. Both operations
are easily feasible using standard MATLAB functions. Then a matrix N of size ns x m is computed:

[] nAnnN == m1 (5)

This matrix contains m vectors of standard normal samples with the desired correlation between
each vector. The next step is to transform these to the desired target distribution. This is realized
using the so called NORTA (NORmal To Anything) algorithm [8] based on an inverse transform
sampling method.
In an intermediate step, the CDF of the normal distribution (hard-coded in the tool) is applied to
each column in the matrix N.

[])(,1 iim nΦuuuU == (6)

ESA GNC 2017 – Marc Hirth et al.

12

In this specific case, this results in a set of vectors ui whose samples represent a uniform distribution
between 0 and 1. Then, similarly the inverse CDF (ICDF) of the target distribution is applied to
each value in the vectors ui.

[])(, target1 iim ICDF uxxxX == (7)

The ICDFs of the target distributions are also represented numerically in Eq. (7) and each xi is
interpolated for the current ui value.
This finally gives vectors of random samples xi for each error signal which describe random
variables with the desired PDF. And, more important, the transformation method preserves the
correlation.
Preserving the correlation under any monotonic transformation is only valid assuming rank
correlation (i.e. Spearman coefficients), but not for linear correlation as e.g. represented by Pearson
product-moment coefficients [8], [9]. As the matrix Σ itself requires Pearson product-moment
coefficients ρp for the setup, first a conversion from Spearman (ρs) to Pearson (ρp) coefficients is
internally realized [9]:

=

6
sin2 πρρ sp

(8)

This also implies that correlation coefficients specified in PEET represent Spearman rank
correlation coefficients, not Pearson product-moment coefficients.

4.2 Concept of Statistical Domains
The concept of statistical domains is a compliant generalisation of the statistical interpretation
concept in [1] and [2] which allows a more flexible definition of requirements.
Basically, the statistical interpretation is a rule for how the “pair” of temporal and ensemble
properties of each error source shall be evaluated, i.e. either taking into account the worst-case or
the statistical distribution of the domains “time” and “ensemble”.
While the domain “time” is unique for all error sources, different “ensemble” domains can exist in a
pointing scenario (as indicated in Figure 9) dependent on the “background” of the randomness, e.g.
random misalignments due to the manufacturing, different sensor noise levels due to different
orientation in space or temperature conditions.
The statistical interpretation inseparably treats contributions from these domains and there is no
possibility to adapt their statistical evaluation individually apart from manually “remodelling” error
source descriptions. With the domain concept, the statistical treatment (worst-case or statistical) of
the domain “time” and each “ensemble” domain can be configured individually according to the
evaluation needs of a requirement.
This allows for instance, the evaluation of a budget for the worst case satellite (“temporal
interpretation” for manufacturing errors), but statistical evaluation of errors varying over an

ESA GNC 2017 – Marc Hirth et al.

13

ensemble of observations (“mixed interpretation”).
Additionally, also different levels of confidence for contributions from different domains can be
defined.

Figure 9: Different ensemble domains “satellite” (e.g. misalignments) and “observation period”

4.3 Error Source Dependencies
In the PEET prototype, the dependencies between different error sources could be defined by
specifying either full correlation or no correlation between all axes of a single error source or
entirely between different error sources.
In PEET 1.0, the user is able to specify correlation individually (between axes of a single error
source or axes of different sources) by specifying correlation coefficients. The specified correlation
matrix is automatically checked for validity by the tool and a valid “close” realization is provided in
case of an infeasible setup [8].
Furthermore, the tool distinguishes between temporal and ensemble correlation, i.e. time-random
sources can be correlated in time while their specification parameters can be correlated over an
ensemble in the given domain and valid setup combinations are provided automatically.
The dependencies for random process error sources described as power spectral densities, can either
be defined by coherence factors or an explicit definition of cross-spectra.
As - different to the simplified statistical method - also the phase relation between periodic signals
affect the error PDF, phase properties can also explicitly be defined.

5 TOOL VERIFICATION AND VALIDATION

To verify the runtime routines of the tool, a comprehensive test campaign was carried out especially
for all lower level algorithms. This covers static and dynamic transfer of all error signal classes,

ESA GNC 2017 – Marc Hirth et al.

14

application of statistical interpretation and time-windowed error metrics to the raw data as well as
implementation tests with all specific source and system models.
A special focus was put on the verification of the numerical approach for the "advanced statistical
method". The sample-based evaluation for all fundamental distributions (also in combinations of
temporal and parameter distributions in a single error source) was compared to analytical results
wherever closed-form solution for the convolution integral exist. The envisaged goal of less than
1% error could be met with a selected number of around one million samples per error source and
axis and with around 10000 bins for the generation and integration of the PDFs. This relative error
goal was safely reached also for the critical case of unbounded or heavily tailed distributions (where
sufficient samples need to "fall" in the outer bins) and performance requirements with a level of
confidence of up to "3-Sigma" (usually even up to "4-Sigma" with less than 5% error).
Verification and validation on system level was carried out by Airbus DS. For that purpose, two
case studies (EDRS and the fictive PointingSat mission) were set up and evaluated using PEET.
The results were compared to an in-house tool both with respect to benchmarking and accuracy of
the budgets. This assessment confirmed a comparable accuracy but with a significant reduction of
computation time and an easier setup and adaptability of the pointing scenarios. Further details on
the application of the tool to a case study is presented in a specific paper [10].

6 CURRENT APPLICATIONS

The prototype version of PEET has already proven to be the tool of choice for pointing error
engineering activities in a number of ESA projects (MetOp-SG, Proba-3, Juice, EDRS, Euclid to
name a few) either as main tool or for cross-checking the results obtained using other tools.
With the availability of PEET 1.0, a verified and more user-friendly version of the tool, enhanced
with advanced statistical methods, is available for the European space community and, as a
consequence, it is expected to be widely used in ESA projects. Early confirmation of this is the
endorsement of PEET 1.0 by the MetOp-SG project as the sole platform for exchange of
information between the various entities involved (ESA, Eumetsat, industrial prime contractors, and
industrial sub-contractors, including payload suppliers). Other ESA projects are expected to follow
a similar approach.

7 SUMMARY AND OUTLOOK

The developed and elaborated concepts during the PEET project phase partially go beyond the level
of detail described in the ECSS standard [1] and the ESA Pointing Error Engineering Handbook [2].
It is expected, that this knowledge will flow back into an update of the handbook in 2017.
The tool itself provides traceability and a common platform for exchange of multi-level budgets
within a project. It allows an efficient handling of budgets especially when a variety of requirements
on different instruments exists. Providing accurate budgets (applicable to general performance
problems, not only pointing) in line with the ECSS standard and the ESA Pointing Error
Engineering Handbook - but without the restriction on the applicability of the central limit theorem
- PEET has the potential to become a standard tool that can be used for any future ESA mission.

ESA GNC 2017 – Marc Hirth et al.

15

8 DISCLAIMER

The view expressed in this paper can in no way be taken to reflect the official opinion of the
European Space Agency.

9 REFERENCES

[1] European Cooperation on Space Standardization, Control Performance Standard ECSS-E-ST-
60-10C, ESA-ESTEC Requirements & Standards Division, 2008.

[2] ESA Engineering Standardisation Board, Pointing Error Engineering Handbook ESSB-HB-E-
003, ESA-ESTEC Requirements & Standards Division, 2011.

[3] Hirth M. et al., The Pointing Error Engineering Tool (PEET): From Prototype to Release
Version, 6th International Conference on Astrodynamics Tools and Techniques, Darmstadt,
Germany, 2016

[4] Pittelkau, M.E., “Pointing Error Definitions, Metrics, and Algorithms”, American Astronautical
Society, AAS 03-559, p. 901, 2003.

[5] Bendat J.S., Piersol A.G., Random Data – Analysis and Measurement Procedures, Wiley, 3rd
edition, 2000

[6] IEEE Aerospace and Electronic Systems Society, IEEE Standard Specification Format Guide
and Test Procedure for Linear Single-Axis, Nongyroscopic Accelerometers, IEEE Std 1253-1998
(R2008), IEEE, New York, NY, USA, 2008

[7] Gentle, J.E, Computational Statistics, Springer, 2009

[8] Gosh S., Dependence in Stochastic Simulation Models, PhD thesis, Cornell University 2004

[9] Simulating Dependent Random Variables Using Copulas, Mathworks Online Documentation,
via http://de.mathworks.com/help/, last accessed April 4, 2017

[10] Ott T. et al., PointingSat – High Precision Pointing Error Analysis with ESA PEET v1.0, 10th
International ESA Conference on Guidance, Navigation & Control Systems, Salzburg, Austria,
2017

	PEET V1.0: THE STATE-OF-THE-ART POINTING AND PERFORMANCE ERROR ENGINEERING TOOL FOR SPACE MISSIONS
	1 INTRODUCTION
	2 PEEH METHODOLOGY IN THE TOOL
	2.1 Requirement Specification Parameters (“AST-0”)
	2.2 Error Source Characterization (AST-1)
	2.3 Transfer Analysis (AST-2)
	2.4 Error Index Contribution (AST-3)
	2.5 Error Evaluation (AST-4)

	3 TOOL OVERVIEW
	3.1 Platforms and Requirements
	3.2 Architecture and External Interfaces
	3.3 Graphical User Interface
	3.4 Software Limitations

	4 KEY SOFTWARE UPDATES
	4.1 Advanced Statistical Method
	4.2 Concept of Statistical Domains
	4.3 Error Source Dependencies

	5 TOOL VERIFICATION AND VALIDATION
	6 Current APPLICATIONS
	7 SUMMARY AND OUTLOOK
	8 DISCLAIMER
	9 REFERENCES

