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ABSTRACT 

 
Future space missions tend to rely on increasingly demanding pointing performance and/or are 
driven by the need for a cost-efficient design process.  

To avoid potential mission- or cost-critical changes late in the design, having at hand a clear 
pointing error engineering methodology to systematically assess achievable performances for 
various requirement categories already in early project phases is crucial. 

The Pointing Error Engineering Tool (PEET) is a software tool which is intended to support 
systems and AOCS engineers in the setup and calculation of such performance error budgets 
with a special focus on spacecraft pointing and relative-positioning. Its computational core is 
based on standardized rules established in the ECSS Control Performance Standard and on the 
methodology described in the ESA Pointing Error Engineering Handbook. 

This paper wraps up the translation of this methodology into a software tool and provides an 
overview of the realized features. Finally, the paper comments on the benefits of PEET and the 
developed concepts from an ESA and industrial user point of view. 

1 INTRODUCTION 

The ECSS Control Performance Standard E-ST-60-10C [1] and the ESA Pointing Error 
Engineering Handbook (PEEH) [2] form the basis of the pointing error engineering process in ESA 
projects. These documents provide both the mathematical elements and a systematic engineering 
methodology to set up pointing requirements, evaluate budgets and to assess pointing performances. 
In 2013, a software prototype called Pointing Error Engineering Tool (PEET) was developed and 
released under an ESA contract with the aim to complement and to ease the application of this 
methodology in daily work.  
With the feedback received from users and the lessons learned during the prototyping phase, a 
second development phase was initiated under a contract of and funded by the European Space 
Agency to turn the prototype into a consolidated software tool which is made available free of 
charge within ESA member states. 
The basic information about the methodology and tool implementation presented in this paper has 
already been outlined in [3], but is updated herein to represent the final state of the tool. Further, the 
paper covers aspects of tool verification and validation and its current application in projects.  
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2 PEEH METHODOLOGY IN THE TOOL 

The methodology described in [2] provides explicit guidelines on how to define pointing 
requirements and on how to define and evaluate pointing errors from source to the final error 
contribution using dedicated analysis steps (ASTs). The reflection of these steps in the software tool 
is described in the following. 

2.1 Requirement Specification Parameters (“AST-0”) 
Dependent on its nature (statistical or spectral), [2] provides sets of specification parameters to 
unambiguously define pointing requirements which are completely reflected in the tool. For 
statistical requirements, the following parameters are used: 
 

• Required maximum error value (defined as deviation per axis or half-cone error) 
• A related level of confidence that above-mentioned error values are not exceeded 
• Metrics for time-windowed errors in terms of performance/knowledge indices as defined in 

[1] and related parameters (e.g. window time) 
• The statistical interpretation that applies to the evaluation 
 

The statistical interpretation concept (as defined in [1]) describes how resulting errors shall be 
treated in the evaluation concerning the domains “time” and “ensemble” (e.g. different satellites, 
observations, etc.). As depicted in Figure 1, “ensemble” interpretation accounts for the statistics of 
the worst-case errors in each realization no matter when they occur in time. “Temporal” 
interpretation accounts for the temporal statistics of the realization that contains the worst-case error 
value and “mixed” interpretation finally accounts for the entire statistics over both time and 
ensemble realizations.  
 

 
Figure 1: Statistical interpretations [1]: “ensemble” (left), “temporal”(centre), “mixed” (right)  

This concept has been further generalised during the PEET development phase to obtain a more 
flexible definition of requirements (see also section 4.2). 
For spectral requirements, only the metric for time-windowed errors is used. All other specification 
parameters above are replaced by a spectral requirement function that describes the upper bound of 
the power spectral density of the error over frequency (within a given bandwidth). 

2.2 Error Source Characterization (AST-1) 
This analysis step aims for identifying all potential error sources that affect the budget and 
classifying these sources on the basis of their characteristic properties (e.g. time-constant vs. time-
random, random vs. deterministic, random variable vs. random process). 
The first part obviously remains an engineering task as it differs in each application case and neither 
[2] nor the tool can provide explicit support. For the classification however, PEET covers all the 
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error signal classes listed in [2] which can be modeled as: 
 

• Time-constant random variables, i.e. biases which can be further subject to an ensemble-
randomness (e.g. alignments within a certain bound) 

• Time-random variables, i.e. errors that are random over time; the parameters of such sources 
can further be subject to an ensemble-randomness (e.g. a noise whose upper bound is 
dependent on temperature conditions that are considered constant within an observation but 
may differ between observations) 

• Random processes, i.e. (stationary, ergodic) noise sources that are completely defined by 
their power spectral density or by a given variance and bandwidth 

• Periodic errors, in particular sinusoidal disturbances whose amplitudes may again be subject 
to an ensemble-randomness. 

• Drift errors, i.e. linearly increasing errors which can be reset after a certain amount of time 
(e.g. due to calibration); the linear slope may again be distributed over the ensemble of 
realizations  

 
All ensemble-random properties of the error source classes can either be set as discrete or be 
selected from common statistical distributions: uniform, (truncated) Gaussian, arcsine, Rayleigh. 
Furthermore, also arbitrary probability density functions (PDFs) can be defined by the user. 
For time-random variables, the temporal distributions are restricted to be uniform and Gaussian, as 
only for these distributions standardized rules are provided in [1] on how the pointing error metrics 
in AST-3 need to be applied.  

2.3 Transfer Analysis (AST-2) 
The transfer analysis determines how initial error sources (e.g. a noise or misalignment of a sensor 
in its mechanical frame) affect the figure of merit defined by the requirement (e.g. the pointing error 
of a payload in the pointing reference frame). The “route” to this final pointing error contribution 
may underlie various transfers such as coordinate transformations or closed-loop transfers. The 
situation for a general transfer analysis setup over multiple subsystem levels is sketched in Figure 2.  

 

 
Figure 2: Transfer analysis from source to total error 

As for the error source classification, no distinct rules can be provided for the identification of 
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relevant transfer models for a certain application case. However, the tool provides a selection of 
generic (i.e. not even restricted to pointing) static and dynamic system models as well as dedicated 
parametric models for certain sensor and actuator error characteristics. 
The dynamic system models available are based on linear time-invariant models with multiple 
inputs/outputs to account for cross-couplings between different axes. Feedback loops can be 
realized by either directly specifying a closed-loop transfer function or by setting up the loop 
explicitly with a dedicated model block. 
The transfer rules for the dynamic system transfer depend on the class of the error signal. Periodic 
and random process errors are accurately transferred using the system gain at the relevant frequency 
or the entire frequency response respectively [4]. Time-constant random variables are scaled using 
the system’s DC gain. For time-random variables, where no frequency domain information is 
present by definition, the system’s H∞ norm is used as conservative upper bound. 

2.4 Error Index Contribution (AST-3) 
This step analyses the impact of the time-windowed pointing error metric as one part of the 
requirement specification parameters. The definition of all available metrics is depicted in Figure 3 
with the typical abbreviations as defined in [1] and [2].  
 

 
Figure 3: Time-windowed error contributions for different pointing metrics 

As an example: the relative performance error (RPE) describes the variation of an error with respect 
to the mean error in a given time window Δt. If this metric is applied to a periodic signal with a very 
large period compared to the window time, the variation within the window is much smaller than 
the signal amplitude. Conversely, for a high frequency periodic signal, the entire amplitude 
variation shows up within one time window. 
For random variables, [1] provides explicit tables with rules on how the various metrics affect the 
effective errors which are completely integrated in the tool. For random process and periodic error 
signals, an equivalent representation of the metrics in terms of rational transfer functions exists [2], 
[3]. This allows an accurate frequency domain contribution analysis with the tool. 

2.5 Error Evaluation (AST-4) 
The final analysis step accounts for the evaluation of the total pointing error or the current error at 
any stage where a (sublevel-) requirement is defined. According to [2], three contributions are 
assessed for statistical requirements: the time-constant, the time-random and the total error 
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contribution where in the end the absolute value of the error for a given level of confidence is of 
interest. 
The summation of the error contribution depends on the statistical method applied [2]. For the 
“simplified statistical method” (realized in the PEET prototype), the error contributions are fully 
described by their equivalent mean and standard deviation (i.e. the underlying distribution is 
discarded at this point). Mean values are summed linearly. Standard deviations are summed either 
in an RSS sense (assuming no correlation) or linearly (assuming full correlation). Then, a 
confidence factor np = 1,2,3 is used to scale the overall standard deviation (i.e. to represent a 1σ, 2σ 
or 3σ confidence level).  
The “advanced statistical method” relies on a characterisation of the error properties in terms of 
probability density functions (PDFs). The total error is generally obtained via convolution of the 
joint PDF of all error contributions. For the resulting PDF, the respective cumulative distribution 
function (CDF) is computed and evaluated for the level of confidence specified in the requirement. 
The major restrictions of the simplified statistical approach is that is assumes applicability of the 
central limit theorem. For that reason, one of the key extensions of the PEET release version is an 
update to the advanced statistical method (see section 4.1). 

3 TOOL OVERVIEW 

3.1 Platforms and Requirements 
PEET can be used on multiple platforms (Windows, Linux) on a standard desktop PC or laptop. 
The tool is designed as an extension to MATLAB and completely runs inside the MATLAB 
environment. Apart from a plain MATLAB installation (2011b and later), only the Control System 
Toolbox is required. 

3.2 Architecture and External Interfaces 
PEET mainly consists of two components: a dedicated graphical user interface (GUI) based on Java 
and the core computational routines implemented as MATLAB classes. 
The GUI is used to define requirement specification parameters, values and identifiers and to set up 
the pointing system from error sources to the final error using blocks from a database. This can 
include system transfer models (as in Figure 2) or simply comprise a summation of errors on 
different requirement levels.  
Input data can directly be specified in tables and input fields or imported from MS Excel 
spreadsheets. In addition to numerical inputs, also MATLAB variable names and notation can be 
used to specify parameters. All relevant scenario data is stored in an XML file which serves as 
interface for the MATLAB core classes for the initialization and evaluation of the budget. 
Once a pointing system is created and saved using the GUI, two operational modes are possible. 
First, the GUI can be used directly to start an evaluation and to inspect the results. The 
communication between the GUI and the MATLAB classes is realized in this case via the Java 
MATLAB Interface (JMI). Second, a script-based execution of the tool via user-defined Matlab 
scripts is possible. Together with assigning MATLAB workspace variables to system parameters, 
this allows batch-mode operations without further use of the graphical user interface and an 
integration of PEET in a tool-chain with other analysis modules.  
The results obtained with PEET can further be exported to MS Excel using a configurable report. 
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3.3 Graphical User Interface 
This section gives a brief overview of the PEET GUI which provides different windows for the 
setup and analysis of budgets. 
 
System Editor 
The editor panel in the System Editor (Figure 4) is the main tool to design the architecture of a 
pointing scenario. It can first be populated with a selection of model blocks from the Block 
Database which are then connected to represent the error signal flow. The workflow for moving and 
connecting blocks is intentionally similar to the workflow with MATLAB Simulink. Also different 
levels (subsystems) are supported to maintain a good overview in case of more complex systems. 
Block dialogs (supported by tooltips) are used to specify error source and system related parameters 
including signal & parameter units. The latter can be chosen from a predefined set of SI and non-SI 
units and also custom units can be created. When connecting blocks, the compliance of units is 
automatically checked by the tool.  
 

 
Figure 4: The System Editor 

The menus present in the System Editor window serve for file management, requirement definition 
(multiple requirements sets can be specified in a single scenario) and definition of dependencies 
(correlation, coherence and phase relations) between error sources. 
An execution log serves as scope to track the progress of the evaluation and issues occurring 
meanwhile (e.g. invalid user parameter inputs).  
 
Block Database 
The Block Database (Figure 5) - similar to the Library Browser in MATLAB Simulink – contains 
all building blocks which can be used to populate a pointing scenario. The blocks are categorized in 
groups (errors sources, static/dynamic systems, etc.).  
It contains both generic blocks and parametric models of sensors, actuators and transfer systems 
which are based on standardized models wherever possible (e.g. [5], [6]). For each model, the block 
database shows a “quick-view” help with important information about the model (purpose, 
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input/output dimensions, background). A detailed description of all models is further present in the 
software user manual. 
 

  
Figure 5: The Block Database 

 
Budget Tree View 
The Budget Tree View (Figure 6) serves to analyze error contributions and the signal content (from 
different error signal classes) of the entire pointing system. Selecting a block in the tree-like 
representation of the pointing system shows the related signal content in the information panel on 
the right. For each signal class, statistical information is provided in terms of mean and standard 
deviation together with a plot preview of the PDF (or PSD respectively for a random process error 
signal). In case of spectral requirements, only random process contributions are displayed. 
 

 
Figure 6: The Budget Tree View 

Breakdown Tree View 
The Breakdown Tree View (Figure 7) is used to check the compliance of the budget. It shows only 
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those blocks where requirements have been associated with (by value and optionally an ID).  
For statistical requirements, the information panel displays a comparison of budget and requirement 
values for the time-constant, time-random and total error contributions on all axes together with a 
plot preview of the underlying CDF. For spectral requirements, the budget spectrum is plotted 
versus the specified requirement function. 
In addition, color-coding is used in the tree view for an easy determination of budget violations or 
proximity to margins. 
 

 
Figure 7: The Breakdown Tree View 

Visualization 
Various plots (PDF, CDF, PSD, cumulated variances) are available from the Budget or the 
Breakdown Tree Views to support the assessment of results. Typical user interactions such as data 
picking, axes selection, or zooming are available. Dependent on the error signal type, further 
information such as scatter plots indicating the correlation or cross-spectral density plots are 
available on separate tabs. All plot data can be exported in a MATLAB compatible format. 

3.4 Software Limitations 
It is important to note that PEET needs to be considered as a systems engineering tool for budgeting 
with a focus on steady-state solutions rather than a replacement for a non-linear simulator. 
Functionalities concerning the treatment of non-linearities, transients, system uncertainties and non-
stationary random processes cannot be explicitly accounted for in the tool. There is a lack of 
standards for these topics which are partially at the interface of research and tool development 
where dedicated algorithms and methods are not mature enough. 
Furthermore, although the tool takes over the entire computation chain of an error budget, still a 
certain amount of user expertise on (pointing) error engineering is required. In particular, for a 
proper definition of requirements or modelling of error sources, no universal guidelines or 
automated rules can be provided. Finally, PEET is not intended to be a tool for control/estimator 
design & tuning, as e.g. the no stability checks of closed-loops in defined feedback systems are 
carried out. The software intentionally covers only the perimeter of [2] and provides interfaces such 
that users can plug PEET into own tools for design/tuning. 
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4 KEY SOFTWARE UPDATES  

This section present the major functional updates of the release version of the tool compared to its 
prototype (apart from improvements on user-friendliness aspects which have been identified from 
user feedback and industry inputs during working group meetings at ESA). These updates are 
related to a more accurate approach for evaluating confidence levels, handling initial dependencies 
between error sources and providing a more flexible definition for requirements. 

4.1 Advanced Statistical Method 
Background 
The PEET prototype was restricted to the simplified statistical method described in [1] and [2], i.e. 
the error evaluation is based on the assumption that the central limit theorem is applicable and the 
total error follows a (nearly) Gaussian distribution (on all axes). While this assumption holds for a 
“sufficient” number of contributors which have approximately the same magnitude, a significant 
systematic error is present when dominating non-Gaussian contributions exist. 
Figure 8 depicts such situation for two zero-mean distributions (for simplicity & without loss of 
generality): Assume that the absolute value of the error shall remain below a given value with 
99.7% probability (pc = 0.997), i.e. with a confidence factor np = 3 as mentioned in section 2.5. For 
an ideal Gaussian, this obviously results in the exact error value of e = 3σ “by definition”. For a 
uniform distribution with bounds ±b, the standard deviation is given by σu = b/√3. Applying the 
same confidence factor under the same assumptions would then result in error value e = √3b while 
the actual result is e = 0.997b. Thus, a systematic error of more than 80% is present which (already 
for a “2σ error”) exceeds the explicit bounds of the underlying distribution.  
 

  

Figure 8: Location of typical confidence levels for a Gaussian distribution (left) and for a 
uniform distribution (right) “assuming” a Gaussian shape 

Another issue with the simplified statistical method is related to the evaluation of line of sight errors 
(LoS) - even if the errors on individual axes are ideally Gaussian. Assume the z-axis is the desired 
LoS axis and rotational errors around the 3 target axes are given by [ex, ey, ez]. Then the proper 
statistical evaluation of the error is represented by:  
 

 deeepe yx

LoC

LOS 




 += ∫ 22

0
 (1) 

 
Reference [2] provides a derived expression which is explicitly valid for instantaneous (or 
deterministic) LoS errors, i.e. it is not applicable to “statistical” axes errors evaluated from |µi| + 
npσi.   
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22
yxLOS eee +=  (2) 

 
For “statistical” errors, [1] provides an approximate solution of the form 
 

)1log(2),max( cyxLOS pe −−= σσ  (3) 
 
which is valid for zero-mean Gaussian distributions with closely equal standard deviations on the 
relevant axis. A “careless” application of equations (2) or (3) to non-matching conditions (e.g. non-
Gaussian, non-zero means, significantly different standard deviations) may generally lead to 
significant systematic errors as depicted in Table 1. 

Table 1. Exemplary 68.3% line-of-sight errors 
Case ≈ 

Error   
Eq.(2) 

≈ Error 
Eq.(3) 

PDF and exact value 
Eq.(3) 

X: G(0,1) 
Y: G(0,1) -7% 0% 

 
eLoS=1.5158 

X: G(1,1) 
Y: G(1,1) 30% -30% 

 
eLoS=2.190 

X: G(0,1) 
Y: G(0,2) -22% +30% 

 
eLoS=2.305 

X:U(-√3, √3) 
Y: G(0,1) -10% -3% 

 
eLoS=1.57 

 
One way to treat these issues is to investigate if the central limit theorem or above-mentioned LoS 
conditions are applicable and assess the impact case-by-case. The alternative is to fully discard the 
evaluation based on mean on standard deviation only and systematically account for the underlying 
probabilities using the advanced statistical method. 
 
Implementation Details 
An analytical treatment of the advanced statistical method implies that the “summation” of 
moments is replaced by the “summation” of distributions (i.e. convolution). This step as well the 
subsequent evaluation of errors with a given level of confidence from a CDF requires integration of 
PDF. If also correlation between different contributions needs to be considered, this further implies 
to knowledge of the joint PDF all error sources for the convolution.  
These preconditions are however in conflict with several constraints: 
 

• Apart from the Control System Toolbox, no further MATLAB toolboxes shall be used (e.g. 
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the Symbolic  Toolbox) to ensure an easier access for users 
• Even with a toolbox for symbolic integration/ convolution, closed-form solutions for an 

arbitrarily complex system cannot be guaranteed  
• Even with a numerical approach for the convolution, the required joint PDF is usually not 

known by the user and cannot simply be determined; as a maximum,  the marginal 
distributions of the sources and correlation in terms of a correlation coefficients are expected 
to be available to users 

 
For these reasons, an entirely numerical (sample-based) approach is realized in PEET. The intrinsic 
drawback of this approach is a loss of accuracy with respect to the analytical computation. The goal 
for the project was not to exceed 1% relative error in the overall computation chain using a 
sufficiently large sample number and a sufficiently large bin number for retrieving the PDF and 
CDF by numerical integration with adequate resolution. Then, the cost of this numerical error can 
safely be neglected compared to the potentially large systematic errors related to the simplified 
statistical method. 
The numerical approach for random variable error sources and distributed parameters requires the 
generation of random samples that represent both the random variable with the desired distribution 
and the desired correlation between the axes and error sources. 
Several methods exist to create samples of correlated standard normal distributed random variables. 
The method used in PEET is based on [7]. It first requires the covariance matrix Σ of size m x m for 
the m error signals to be realized. For a standard normal distribution (i.e. with unity variance), the 
covariance matrix is equal to the matrix of correlation coefficients. Then a Cholesky decomposition 
is applied to the matrix to obtain an upper triangular matrix A: 
 
 

AAΣ T=  (4) 
 
 
In a next step, a vector n of length ns is drawn from a standard normal distribution. Both operations 
are easily feasible using standard MATLAB functions. Then a matrix N of size ns  x m is computed: 
 
 

[ ] nAnnN == m1  (5) 
 
 
This matrix contains m vectors of standard normal samples with the desired correlation between 
each vector. The next step is to transform these to the desired target distribution. This is realized 
using the so called NORTA (NORmal To Anything) algorithm [8] based on an inverse transform 
sampling method. 
In an intermediate step, the CDF of the normal distribution (hard-coded in the tool) is applied to 
each column in the matrix N. 
 
 

[ ] )(    ,1 iim nΦuuuU ==   (6) 
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In this specific case, this results in a set of vectors ui whose samples represent a uniform distribution 
between 0 and 1. Then, similarly the inverse CDF (ICDF) of the target distribution is applied to 
each value in the vectors ui. 
 
 
 

[ ] )(    , target1 iim ICDF uxxxX ==   (7) 
 
 
The ICDFs of the target distributions are also represented numerically in Eq. (7) and each xi is 
interpolated for the current ui value.  
This finally gives vectors of random samples xi for each error signal which describe random 
variables with the desired PDF. And, more important, the transformation method preserves the 
correlation. 
Preserving the correlation under any monotonic transformation is only valid assuming rank 
correlation (i.e. Spearman coefficients), but not for linear correlation as e.g. represented by Pearson 
product-moment coefficients [8], [9]. As the matrix Σ itself requires Pearson product-moment 
coefficients ρp for the setup, first a conversion from Spearman (ρs) to Pearson (ρp) coefficients is 
internally realized [9]: 
 
 







=

6
sin2 πρρ sp

 
(8) 

 
 
This also implies that correlation coefficients specified in PEET represent Spearman rank 
correlation coefficients, not Pearson product-moment coefficients. 

4.2 Concept of Statistical Domains 
The concept of statistical domains is a compliant generalisation of the statistical interpretation 
concept in [1] and [2] which allows a more flexible definition of requirements. 
Basically, the statistical interpretation is a rule for how the “pair” of temporal and ensemble 
properties of each error source shall be evaluated, i.e. either taking into account the worst-case or 
the statistical distribution of the domains “time” and “ensemble”. 
While the domain “time” is unique for all error sources, different “ensemble” domains can exist in a 
pointing scenario (as indicated in Figure 9) dependent on the “background” of the randomness, e.g. 
random misalignments due to the manufacturing, different sensor noise levels due to different 
orientation in space or temperature conditions. 
The statistical interpretation inseparably treats contributions from these domains and there is no 
possibility to adapt their statistical evaluation individually apart from manually “remodelling” error 
source descriptions. With the domain concept, the statistical treatment (worst-case or statistical) of 
the domain “time” and each “ensemble” domain can be configured individually according to the 
evaluation needs of a requirement. 
This allows for instance, the evaluation of a budget for the worst case satellite (“temporal 
interpretation” for manufacturing errors), but statistical evaluation of errors varying over an 
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ensemble of observations (“mixed interpretation”).  
Additionally, also different levels of confidence for contributions from different domains can be 
defined. 
 

 
Figure 9: Different ensemble domains “satellite” (e.g. misalignments) and “observation period”  

4.3 Error Source Dependencies 
In the PEET prototype, the dependencies between different error sources could be defined by 
specifying either full correlation or no correlation between all axes of a single error source or 
entirely between different error sources. 
In PEET 1.0, the user is able to specify correlation individually (between axes of a single error 
source or axes of different sources) by specifying correlation coefficients. The specified correlation 
matrix is automatically checked for validity by the tool and a valid “close” realization is provided in 
case of an infeasible setup [8]. 
Furthermore, the tool distinguishes between temporal and ensemble correlation, i.e. time-random 
sources can be correlated in time while their specification parameters can be correlated over an 
ensemble in the given domain and valid setup combinations are provided automatically.   
The dependencies for random process error sources described as power spectral densities, can either 
be defined by coherence factors or an explicit definition of cross-spectra.  
As - different to the simplified statistical method - also the phase relation between periodic signals 
affect the error PDF, phase properties can also explicitly be defined. 

5 TOOL VERIFICATION AND VALIDATION 

To verify the runtime routines of the tool, a comprehensive test campaign was carried out especially 
for all lower level algorithms. This covers static and dynamic transfer of all error signal classes, 
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application of statistical interpretation and time-windowed error metrics to the raw data as well as 
implementation tests with all specific source and system models.  
A special focus was put on the verification of the numerical approach for the "advanced statistical 
method". The sample-based evaluation for all fundamental distributions (also in combinations of 
temporal and parameter distributions in a single error source) was compared to analytical results 
wherever closed-form solution for the convolution integral exist. The envisaged goal of less than 
1% error could be met with a selected number of around one million samples per error source and 
axis and with around 10000 bins for the generation and integration of the PDFs. This relative error 
goal was safely reached also for the critical case of unbounded or heavily tailed distributions (where 
sufficient samples need to "fall" in the outer bins) and performance requirements with a level of 
confidence of up to "3-Sigma" (usually even up to "4-Sigma" with less than 5% error). 
Verification and validation on system level was carried out by Airbus DS. For that purpose, two 
case studies (EDRS and the fictive PointingSat mission) were set up and evaluated using PEET. 
The results were compared to an in-house tool both with respect to benchmarking and accuracy of 
the budgets. This assessment confirmed a comparable accuracy but with a significant reduction of 
computation time and an easier setup and adaptability of the pointing scenarios. Further details on 
the application of the tool to a case study is presented in a specific paper [10]. 

6 CURRENT APPLICATIONS 

The prototype version of PEET has already proven to be the tool of choice for pointing error 
engineering activities in a number of ESA projects (MetOp-SG, Proba-3, Juice, EDRS, Euclid to 
name a few) either as main tool or for cross-checking the results obtained using other tools. 
With the availability of PEET 1.0, a verified and more user-friendly version of the tool, enhanced 
with advanced statistical methods, is available for the European space community and, as a 
consequence, it is expected to be widely used in ESA projects. Early confirmation of this is the 
endorsement of PEET 1.0 by the MetOp-SG project as the sole platform for exchange of 
information between the various entities involved (ESA, Eumetsat, industrial prime contractors, and 
industrial sub-contractors, including payload suppliers). Other ESA projects are expected to follow 
a similar approach. 

7 SUMMARY AND OUTLOOK 

The developed and elaborated concepts during the PEET project phase partially go beyond the level 
of detail described in the ECSS standard [1] and the ESA Pointing Error Engineering Handbook [2]. 
It is expected, that this knowledge will flow back into an update of the handbook in 2017.  
The tool itself provides traceability and a common platform for exchange of multi-level budgets 
within a project. It allows an efficient handling of budgets especially when a variety of requirements 
on different instruments exists. Providing accurate budgets (applicable to general performance 
problems, not only pointing) in line with the ECSS standard and the ESA Pointing Error 
Engineering Handbook - but without the restriction on the applicability of the central limit theorem 
- PEET has the potential to become a standard tool that can be used for any future ESA mission. 



 
 

ESA GNC 2017 – Marc Hirth et al. 
 

15 

8 DISCLAIMER 

The view expressed in this paper can in no way be taken to reflect the official opinion of the 
European Space Agency. 
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