

Pointing Error Engineering Tool (PEET)

Final Presentation

ESTEC Frame Contract 19179/05/NL/LvH Work Order 19

ESA/ESTEC November 15, 2012

Agenda

Morning Session

- Introduction to the Pointing Error Engineering Handbook
- Project overview
- Presentation of the PEET software
- Summary and status report

Afternoon (room Nc321)

- Live demonstration of PEET
- Questions & answers session

Pointing Error Engineering Tool

These are the main objectives of PEET:

 PEET shall support the ESA PEE Handbook users in compiling pointing error budgets

 PEET shall support interactive breakdown and budgeting with the possibility for the user to visually examine the response to his actions

 PEET shall assist the user by providing a database of common pointing error sources

Work Packages

- WP1 Requirements Capture
- WP2 PointingSat Reference Case Definition
- WP3 Software Core Design
- WP4 GUI Design
- WP5 Database Design
- WP6 Testing and Validation

Work started mid of January 2012

PEET Prototype Development Team IF?

PEET Prototype Development

Astos Solutions

- Prime Contractor
- GUI Development
- Core Development
- Testing and Verification
- Project Management

Institute of Flight Mechanics and Control, University of Stuttgart

- Consultancy
- Experts in Pointing Error Engineering and GNC
- Co-authors of the Pointing Error Engineering Handbook
- Definition of the PointingSat study case

PEET Development Process

The development of PEET is divided into two phases:

- A prototyping phase with special focus on pre-phase A (CDF studies) and Phase A activities
- 2. A development phase, potentially funded by the GSTP programme, supporting as well detailed pointing error engineering tasks of Phase B and Phase C/D.

PEET Prototype Development

- The software is designed as a MATLAB toolbox
- The GUI is written in Java while the core algorithms are written in MATLAB, thus they can reuse built-in MATLAB functions
- Software documentation according to ECSS standards (SRD, ICD, SDD, SUM, SVP) is available
- Source code is version controlled using Subversion VCS
- Continuous integration/testing using Hudson CI
- Bug tracking using Request Tracker

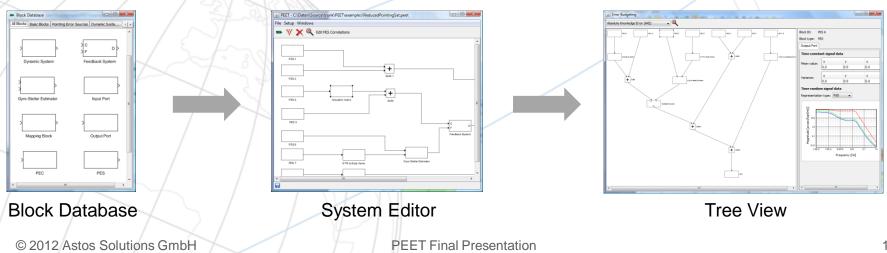
Prerequisites / Dependencies

- MATLAB (>2009a), 32 bit version
- Simulink
- Control System Toolbox
- Windows Operating System (tested with XP, Vista and 7)

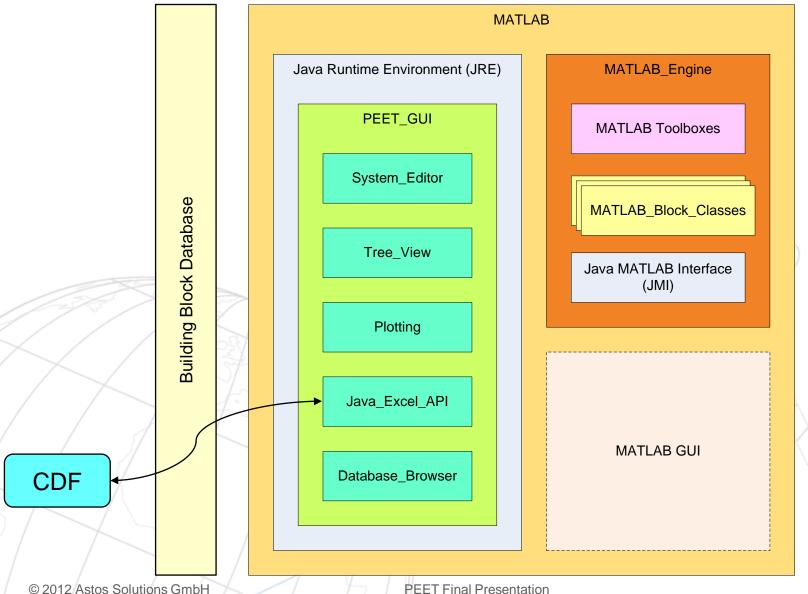
	PEET - C:\Daten\Source\trunk\PEET\examples\ReducedPointingSat.peet
	File Setup Database Windows
	= Y X 🔍
MATLAB R2012a File Edit Debug Desktop Window Help Shortcuts How to Add What's New Image: Command Window Image	PES 3
Start Ready	

PEET License Conditions

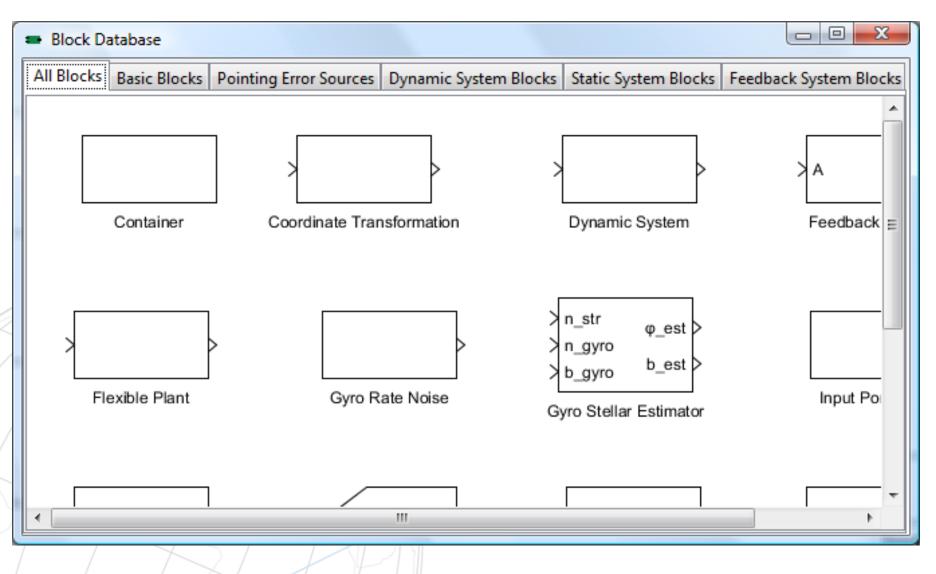
PEET will be published under the "ESA Community Open License":


- Open source for ESA member countries
- License-free access to PEET for ESA member countries.
- PEET can/shall be used by European industry (e.g. within ESA projects)

PEET Workflow


The PEET workflow is fully compatible with the methodology defined in the PEEH:

- 1. Characterization of pointing error sources (AST-1)
- 2. Setup the pointing error system within the System Editor of PEET using blocks from the library (AST-2)
- 3. Analyse the pointing error budget or do break down studies using the Tree View of PEET (AST-3 & AST-4)


PEET Architecture

PEET Building Blocks

© 2012 Astos Solutions GmbH

PEET Final Presentation

AST-1

Characterization of PES

PEET Pointing Error Sources

- I- or 3-dimensional pointing error sources
- Time-constant
 - Uniform, Gaussian, bimodal, Rayleigh, discrete
- Time-random
 - Random variables
 - Uniform, Gaussian, drift
 - Random processes
 - Time series
 - Power spectral density
 - Covariance matrix

time $no \rightarrow e_S(t)$ constant - Bias Bias(t) Random Periodic RP-data ves available - Bias(t) Periodic andom variable random process Random Random random variable Gaussian Gaussian → LTI analysis Uniform - Uniform Gaussian other other → LTI analysis auidelines in guidelines in auidelines in E-ST-60-10C ESSB-HB-E-003 E-ST-60-10C

PES error data es

- Periodic process (defined by frequency and amplitude)

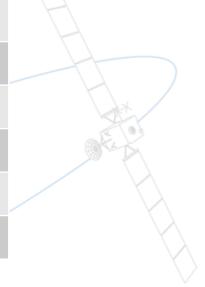
Time-constant and time-random parts can be both defined in parallel

Examples of PES (AST-1)

Typical pointing error sources that are part of the PointingSat reference case:

Payload-star tracker alignment knowledge (assembly)

Payload-star tracker alignment knowledge (launch)


Thruster noise

Temporal star tracker noise

Gyro noise

Environmental disturbances

Cryocooler micro-vibrations

Pointing Error Sources (AST-1)

Description of PES:

- User defines signal class and distribution type (for random description).
- PEET automatically performs statistical interpretation according to user-selection in line with PEEH or ECSS tables
 - Example: temporal Gaussian distribution with uniformly distributed variance (e.g. T-dependence)

Time-Constant PES

Example: Payload-STR misalignment knowledge (integration)

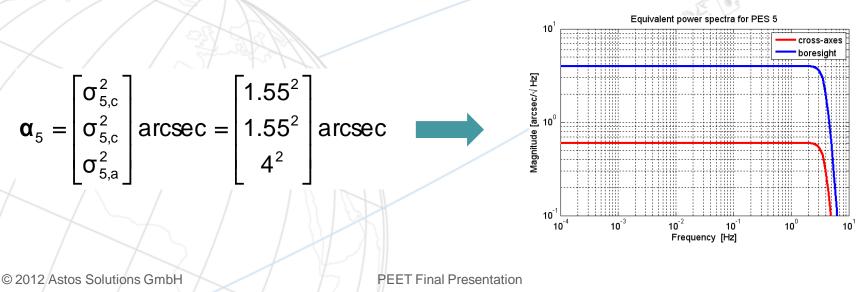
- Constant after assembly
- Based on theodolite measurements
- Time-constant random variable with uniform distribution
 Fully correlated among different axes
 No correlation with other PES

$$\boldsymbol{\alpha}_{1} = \begin{bmatrix} U(0, \alpha_{1, \max, x}) \\ U(0, \alpha_{1, \max, y}) \\ U(0, \alpha_{1, \max, z}) \end{bmatrix} \text{ arcsec} = \begin{bmatrix} U(0, 27) \\ U(0, 25) \\ U(0, 30) \end{bmatrix} \text{ arcsec}$$

PES Dialog for Time-constant PESs IFR Astos

📣 PES 1 Setting	gs			×
Signal dimension:	3D	~		
🔽 Use time-constant part 🛛 🔄 Use time-random part				
Time-constant Tir	me-random			
Distribution type:	Uniform 🔽			
Minimum:	x	У	z	
	0.0	0.0	0.0	
Maximum:	X	У	z	
nd Xindin.	1.454E-4	1.212E-4	1.309E-4	
Axes correlation:	Fully correlate	ed 🔽		
	ОК	Cancel		

PES Dialog for Time-constant PESs IFR Astos

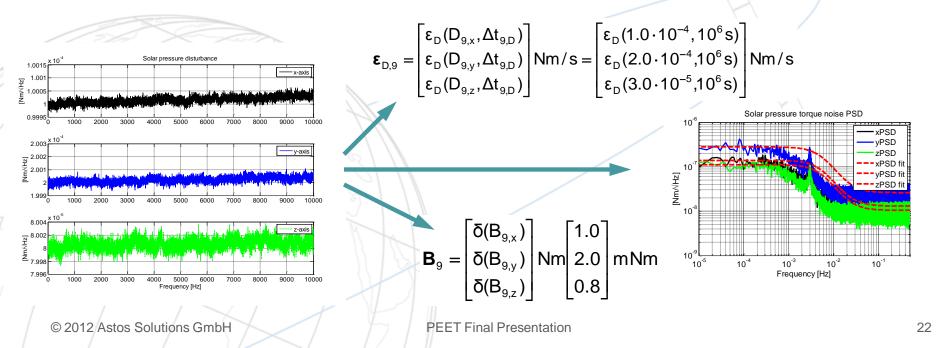

📣 PES 2 Setting	gs.		×	
Signal dimension:	3D	~		
🔽 Use time-const	ant part [Use time-rar	ndom part	
Time-constant Tir	ne-random			
Distribution type:	Gaussian 💌			
Mean value:	x	У	z	
	0.0	0.0	0.0	E
Variance:	x	У	z	
Yananco.	5.288E-9	2.35E-9	5.88E-10	
Axes correlation:	Uncorrelated	~		
	ОК	Cancel		

Random Process PES (AST-1)

Example: Temporal star tracker noise

- Given by variances on cross-boresight and boresight axis together with sensor sampling time
- Random process described as covariance (zero-diagonals)
- Automatically converted to PSD with respective variance using low-pass filter (cut-off at Nyquist frequency)

Random Processes

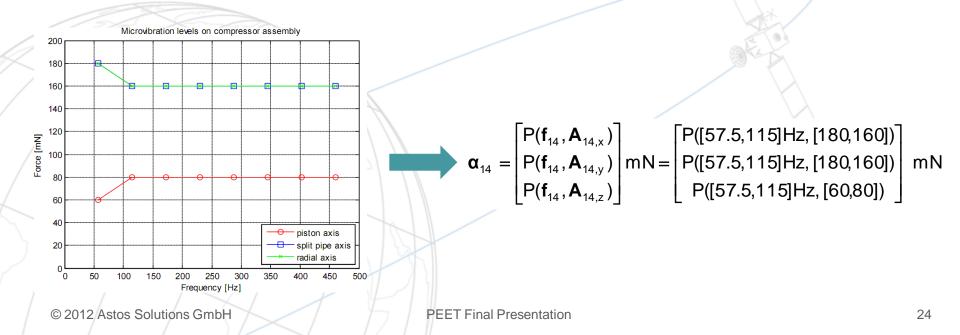

📣 PES 5 Settin	gs 🔀	
Signal dimension:	3D 🛩	
Use time-const	ant part 🛛 🗹 Use time-random part	
Time-constant Tir	me-random	
Representation:	Random process 💌	5
Туре:	Covariance 💌	At 1
Sampling time:	0.125	E.
Axes correlation:	Uncorrelated 🔽	K
Variance:	x y z	X
	0.36 0.36 16.0	
	OK Cancel	

Time Series PES (AST-1)

Example: Environmental disturbances

- Time series of environmental noise (mainly solar pressure) from simulation (imported from file)
- Automatic conversion into PSD, Bias and drift type PES
 PEET derives full correlation state (cross-spectral densities)

Time Series PES Dialog

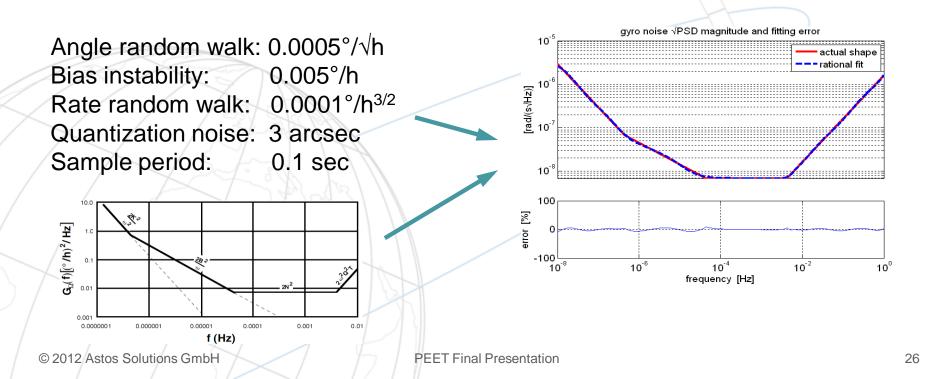

📣 PES 8	Settings		x
Signal d	imension:	BD -	^
🔲 Use	time-constant part	✓ Use time-random part	
Time-co			
Represe	ntation:	Random process 👻	
Туре:		Time series 💌	
Rationa	l fit		Ξ
🔽 Min	/Max pole order:	5.0 5.0	
Time se	eries		
-	•] •		
	Time	x y z	
1	0.0	9.998629063935323E-5 2.000010598673501E-4 8.000438241637461E-5	
2	1.0	9.999439649191285E-5 2.0003191726251208E-4 7.999486938755421E-5	-
3	2.0	9.999433016301809E-5 2.0000180799751064E-4 8.000202239976418E-5	
4	3.0	9.999789740120918E-5 2.0000011396369976E-4 8.00008217412665E-5	
5	4.0	9.999261709057684E-5 1.999993098996207E-4 7.999206896125049E-5	
6	5.0	1.0001383212023756E-4 2.0002144189756575E-4 7.999444043351676E-5	Ŧ
		OK Cancel	

Periodic Random Process PES

Example: Cryocooler micro-vibrations

- Measured harmonics of compressor forces at a set of frequencies
- Random process of type Periodic
- Definition via distinct force-amplitude pairs in PEET

Periodic Random Process PES



	ES 13 Settings al dimension:	3D 👻			
	Use time-constant p	oart 🛛 🔽 Use t	ime-random part	t	
Tim	e-constant Time-	andom			
Rep	resentation:	Random proce	ss 🔻		
Тур	e:	Periodic 🔹]		
Amplitude distribution: Discrete 👻					
Axes	Axes correlation: Uncorrelated				
3-	}• ■ }•	-			
	Frequency	x	у	z	
1	57.5	0.18	0.18	0.06	
2	115.0	0.16	0.16	0.08	
*					
		ОК	Cancel		

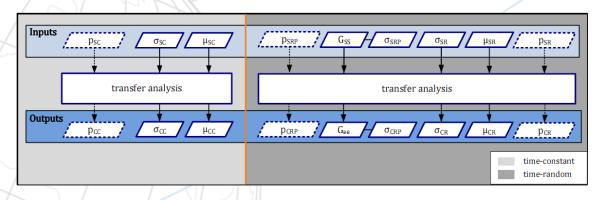
Gyro Rate Noise PES (AST-1)

- Given by a set of typical parameters describing piece-wise the spectrum
- Random process described as PSD
- Special input dialog

Gyro Noise Block Dialog

A PES 7 Settings		×
Rational fit		
Min/Max pole order:	16.0	16.0
Number of frequency points:	1000.0	
Gyro noise parameters		
Angle random walk N [deg/h ^{1/2}]:	5.0E-4]
Rate random walk K [deg/h ^{3/2}]:	1.0E-4]
Bias instability B [deg/h]:	0.0010]
Quantization noise Q [arcsec]:	3.0	
Sample period T [s]:	0.1	
	OK Cancel	
TAS		

AST-2


Transfer Analysis

Transfer Analysis (AST-2)

Transfer Analysis:

- Transfer from PES to contributors on pointing level via
 - static systems (e.g. coordinate transformations, actuation matrix,...)
 - dynamic systems (e.g. plant, controller, estimator, structure)
- System transfer definition remains user task
 - but PEET provides tools for realization and basic models

Mapping Matrix

Example: Thruster noise

 Mapping of ('1D') thrust noise to physical axes via thruster configuration matrix

Number of devices	: 10 -			
	x	у	z	Hx.
	1.9445	0.0	0.0	
	-1.9445	0.0	0.0	- All All All All All All All All All Al
	1.9445	0.0	0.0	
	-1.9445	0.0	0.0	Number of 'devices' n
Mapping matrix:	0.0	1.8385	0.0	
	0.0	-1.8385	0.0	n x 3 mapping data
	0.0	-0.4	-1.5	IT X 3 mapping data
	0.0	0.4	1.5	
	0.0	0.4	-1.5	
	0.0	-0.4	1.5	
	ОК	Cancel		

Coordinate Transformation

Example: Star tracker temporal noise

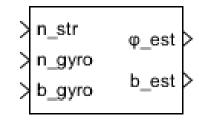
- Conversion from sensor to pointing axes via coordinate transformation
- Defined by rotation sequence and three angles

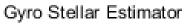
	📣 STR to Body Fram	ne Settings	
	Rotation sequence:	3-2-1 🔻	
15000	Phi [rad]:	0.0	
A	Theta [rad]:	1.5708	
	Psi [rad]:	3.1416	
	ОК	Cancel	
A	PR		1

Dynamic System Block (AST-2)

Example: Cryocooler micro-vibrations

 Transfer of compressor forces to pointing error level via satellite structure

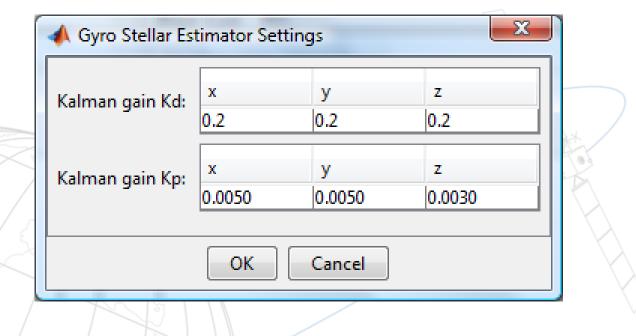

Alternative definitions:


- Zero-Pole-Gain model
- State-Space model

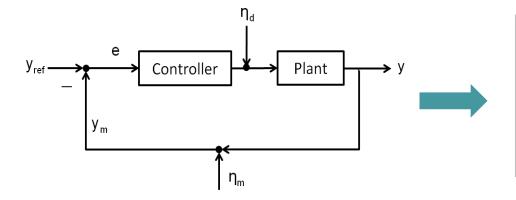
-	Compressor Force Settings
Rep	presentation: Transfer function
Ma	trix element: 🛛 🔻
3	3• 3•
	Numerator coefficients
1	0.03062
E-	
*	3•• 3••
	Denominator coefficients
1	1.0
-	12.57
3	3948.0
*	
*	

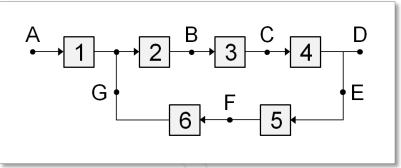
Gyro Stellar Estimator (AST-2)

- SISO fixed-gain Kalman-Filter for each axis
- Possible inputs:
 - Star Tracker attitude
 - Gyro noise
 - Gyro bias
 - Possible outputs:
 - Attitude and drift bias estimation error
- Parameters:
 - 2 Kalman gains for each axis

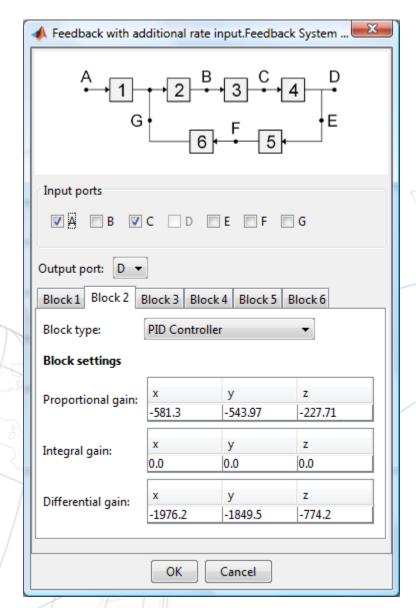

 $\mathbf{K}_{1} = \begin{vmatrix} \mathbf{K}_{1,x} \\ \mathbf{K}_{1,y} \\ \mathbf{K}_{1,y} \end{vmatrix} = \begin{bmatrix} 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \end{bmatrix}$

 $\mathbf{K}_{2} = \begin{bmatrix} \mathbf{K}_{2,x} \\ \mathbf{K}_{2,y} \\ \mathbf{K}_{2,z} \end{bmatrix} = \begin{bmatrix} 0.005 \\ 0.005 \\ 0.003 \end{bmatrix}$

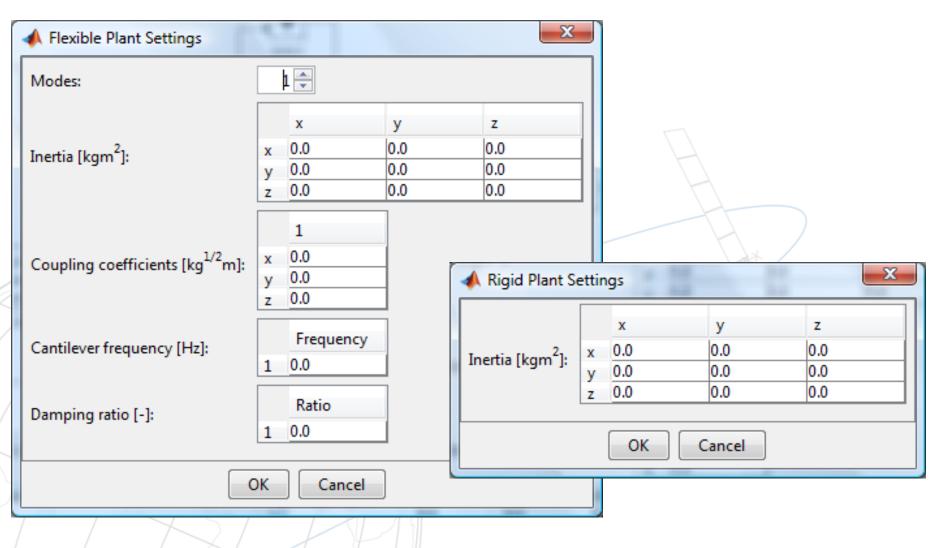

Gyro Stellar Estimator (AST-2)



Feedback Block (AST-2)



- Fixed internal block structure, but
- Each internal block is customizable
 - User can select from any SISO transfer block defined in the library
 - E.g. dynamic system, plant, controller, etc.
- User-defined input nodes and user-defined output node
- Remaining sub-blocks not required (unity transfer by default)


Feedback Block (AST-2)

Flexible and Rigid Plant

PID controller

A PID Controller S	ettings	-	in the	x	
Proportional gain:	x	у	z		A
Tetered acies	0.0 x	0.0 V	0.0		H
Integral gain:	0.0	0.0	0.0		
Differential gain:	x 0.0	у 0.0	z 0.0		K
	ОК	Cancel]		

AST-3 & AST-4

Pointing Error Index Contribution

& Pointing Error Evaluation

PE Index Contribution (AST-3)

Working steps of AST-3:

1. Worst case pointing error index

- Application of pointing error metrics
 PEET
- Statistical interpretation of pointing error indices
 PEET

Pointing Error Evaluation (AST-4)

Working steps of AST-4:

1. Define correlation between PEC

PEET

- 2. Summation of PEC and level of confidence evaluation PEET
- 3. Compilation of total pointing error

PE Index Contribution & Evaluation

Processing of AST-3 and AST-4 according to global user settings х Correlation Matrix

iF=

PES1 🔻

PES 10 -

First source:

Second source:

- selection of pointing error index
- level of confidence

 statistical in 	nterpretation	Correlation between Correlation:	n PES Jncorrelated 🔻					
 correlation 		ОК	Cancel					
📣 Index Manager					x			
+ ×								
Absolute Performance Error 	ID:	PRE_mixed						
Relative Performance Error	Statistical interpretation:	Mixed •	Confide	ence coefficient: 3.0	=			
Performance Reproducibilit	Window time:	0.5	Choose Error	r Index Type	x			
PRE_mixed	Stability time:	600.0		, mack type				
	•			Choose error index type:				
		OK Cancel	Performar	OK Abbrec				
© 2012 Astos Solutions GmbH		PEET Final Presentation						

Pointing Error Break-Down

- Pointing Error Break-Down is supported by PEET in terms of a sensitivity analysis (identification of error drivers)
- For nearly all input parameters it is possible to analyse the total pointing error sensitivity with respect to these parameters
- PEET displays the sensitivity as differential quotient for each axis.

📓 Sensitivity	Analysis	alysis						
\$								
	0.0	0.0	0.0					
Select element	0.0	0.0	0.0					
Sciect cicilici	0.0	0.0	0.0					
	0.0	0.0	0.0					
Analysis resu	lt; ×	У	z					
		2.439454888	-7.73233276.					
	·	Close						

Result Export

- Data structures accessible from MATLAB (workspace)
- Export via Excel interface (single block data)
- Reporting function (one Excel document for each index)

	APE_Report.xls [Compatibility Mode] - Microsoft Excel											x			
	C	Home	e Insert	Page	Layout Fo	rmulas Data	Review	View	Develo	per Add-Ins			۲	- 🖻	×
		aste 🛷	Arial ■ I U -	+ 10	• A a 3 • <u>A</u> • 5	E E E E E		•	🔀 Conditi 😼 Format 🚽 Cell Styl		Gells	Σ ▼ 	Sort & Filter •	Select *	
	A1 • fx Block ID											≯			
	4		A B		С		D		E =						
	1	Block ID	ock ID Block type		Mean value(x)		Mean value(y)		Mean value(z)						
	2	Dynamic \$	/namic System 1 Dynamic System		4.58973E-05		4.58973E-05				7				
	3	Dynamic \$	System 2		Dynamic Sys	stem		1.	53169E-08		1.53169E-08			1.531	6 =
	4	PES 1			PES		N/A			N/A		N/A			
	5	PES 2			PES			0.	636396103		0				
	6	PES 3			PES		N/A			N/A		N/A			
	7	SUM			SUM				53169E-08		1.53169E-08			1.531	
	8	SUM 1			SUM			4.	58973E-05		4.58973E-05			4.589	17
	9	Static Sys			Static Syster		N/A			N/A		N/A			
		Static Sys			Static Syster		N/A			N/A		N/A			-
	H -	<>>► ► I G	eneral info 🏑	Const	ant random va	ariable 🔪 Drift 🚶	Periodic	Rando	m process	C Random variab	e 🤶 🔁 🖌 🖕			•	
Ready 🛅 🛄 100% 😑 — 🔍 🕂										:					
		2012 A atas	Solutions C	and he le		V~ 1	DEET Einal	Dree	antotion.					10000	1

© 2012 Astos Solutions GmbH

Expandability of PEET

The block library of PEET can be extended in several ways:

- Writing own MATLAB classes (interfaces are explained in the ICD)
- Adding block containers that comprise a multi-block subsystem
- Adding basic blocks with predefined parameters (masked blocks)

PEET Website

A website for PEET will be available soon.

- Overview
- Documentation
- Downloads
- Bug tracker and wish list
- Sections on pointing error engineering standard and handbook

http://peet.estec.esa.int

Key Features / Summary

- Workflow in Accordance with PEEH
- Automatically performs step AST-3 and AST-4 of the PEEH
- Fast switching between Pointing Error Indices
- Extendable block library (low, medium and high level models)
- Flexible definition of PES (nearly no conversions have to be made in advance by the user)
- Built-in plotting of PSDs and time series
- Performs error budgeting and supports break-down analyses
- Fully integrated in MATLAB environment (input parameters may be defined as MATLAB workspace variables)
- Available to industry (of ESA member countries) for free
 - Standardized exchange format
 - Easy model exchange between contractor(s) and ESA

Current Status of PEET Prototype

- Prototype development finalized
- All presented functionality is available
- User and developer documentation available
- Verification and basic validation is made (using the PointingSat example and other basic testcases)
- A detailed validation of all potential block combination would be desireable but a lot of effort (> 1000 testcases; not part of the project)

Outlook

- Extensive validation campaign
- Extension and refinement of the core routines, e.g.
 - Optimization of prototype routines (performance improvement)
 - Extended correlation options (currently only full or none)
- Extension of user-interface, e.g.
 - Extension of block database with more parametric model for subsystems
 - Advanced PES and dynamic system definition
- Extension of analysis capability
- Tutorials and handbook improvements (according to leases learnt)